Compute rank correlation between a gene rank vector/matrix and gene sets
Value
Named list with components:
rho - Matrix of correlation coefficients between rnk and gset
p.value - Matrix of p-values for correlation (if compute.p = TRUE)
q.value - Matrix of FDR adjusted p-values (if compute.p = TRUE)
Details
This function calculates sparse rank correlation between rnk and each
column of gset using qlcMatrix::corSparse(). It handles missing values in
rnk by computing column-wise correlations.
P-values are computed from statistical distribution
Examples
# Create example rank vector
set.seed(123)
ranks <- rnorm(100)
names(ranks) <- paste0("GENE", 1:100)
# Create example gene sets as sparse matrix
gmt <- list(
"Pathway1" = paste0("GENE", 1:20),
"Pathway2" = paste0("GENE", 15:35),
"Pathway3" = paste0("GENE", 30:50)
)
genesets <- gmt2mat(gmt)
# Calculate rank correlation
result <- gset.rankcor(ranks, genesets, compute.p = TRUE)
print(result$rho)
#> rnk
#> Pathway2 -0.06037224
#> Pathway3 0.17550071
#> Pathway1 0.08486979
print(result$p.value)
#> rnk
#> Pathway2 0.6751902
#> Pathway3 0.2168031
#> Pathway1 0.5551073
