
Package index
-
chunked_crossprod() - Chunked computation of cross product
-
colranks() - Compute columnwise ranks of matrix
-
cor_sparse_matrix() - Calculate sparse correlation matrix handling missing values
-
dualGSEA() - Reimplementation of dualGSEA (Bull et al., 2024) but defaults with replaid backend. For the preranked test we still use fgsea. Should be much faster than original using fgsea + GSVA::ssGSEA.
-
dual_test() - Statistical testing of differentially enrichment
-
fc_ttest() - Statistical testing of differentially enrichment
-
gmt2mat() - Convert GMT to Binary Matrix
-
gset.rankcor() - Calculate gene set rank correlation
-
gset_averageCLR() - Compute geneset expression as the average log-ration of genes in the geneset. Requires log-expression matrix X and (sparse) geneset matrix matG.
-
gset_ttest() - Perform t-test on gene set scores
-
mat.rowsds() - Calculate row standard deviations for matrix
-
mat2gmt() - Convert Binary Matrix to GMT
-
matrix_metap() - Matrix version for combining p-values using fisher or stouffer method. Much faster than doing metap::sumlog() and metap::sumz()
-
matrix_onesample_ttest() - Perform one-sample t-test on matrix with gene sets
-
normalize_medians() - Normalize column medians of matrix
-
plaid() - Compute PLAID single-sample enrichment score
-
read.gmt() - Read GMT File
-
replaid.aucell() - Fast calculation of AUCell
-
replaid.gsva() - Fast approximation of GSVA
-
replaid.scse() - Fast calculation of scSE score
-
replaid.sing() - Fast calculation of singscore
-
replaid.ssgsea() - Fast calculation of ssGSEA
-
replaid.ucell() - Fast calculation of UCell
-
sparse_colranks() - Compute columm ranks for sparse matrix. Internally used by colranks()
-
write.gmt() - Write GMT File